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Lossy Transmission Lines: Time Domain
Formulation and Simulation Model

Patrick S. Yeung, Member, IEEE

Abstract— The time domain quasi-TEM equations for lossy
transmission lines with R, L, C, and G parameters is reformu-
lated and solved to relate directly the currents and voltages at
the line terminations, at present and past times. This allows a
computer model to be set up for simulating circuits with nonlinear
terminations in the time domain using general circuit simulators.
This formulation describes propagation of two dynamic forward
and backward waves and is the extension of the method of char-
acteristics to the lossy case. Distortion and impedance changes are
generated by finite convolutions with past history information at
the line terminations. For constant R, L, C, and G, and for a skin
effect approximation, the kernels of Green’s functions for these
convolutions are derived as analytic expressions.

-I. INTRODUCTION

OMPUTER simulations of transmission line effects (sig-
Cnal delays, distortions, and crosstalk) have become an
indispensible design tool for microwave, GaAs, and high-
speed high-density digital circuit designs. These simulations
must be accurate to act as software breadboards to help
designers “get it right the first time.” Nonlinear and frequency
dependent effects need to be accounted for where appropriate,
to ensure that the predicted simulation results correlate with
the circuit performance after manufacture. This is especially
important when design margins are tight and there is little
room for overdesign.

Neglecting losses, transient analysis of transmission line
networks with linear or nonlinear terminations is a well
studied subject [1]. For lossy lines, several methods have
been investigated [2]. Since nonlinear terminal networks are
best analyzed in the time domain, recent developments focus
on implementing a frequency domain analysis of the linear
lossy line network in the nonlinear time domain solution. This
is achieved by either the piecewise decomposition technique
[3] or through time-domain Green’s functions [4]. To be
implemented in a general circuit simulator (such as SPICE,
SCAMPER {5], or ASTAP [6]), the former approach requires
nontrivial modifications to the matrix formulations of the
simulator. On the other hand, the latter method in its present
form suffers from the need for inserting negative impedance
elements into the network and lengthy evaluations of Green’s
functions and their convolutions.

In this paper, we present an approach to analyze the lossy
line directly in the time domain with the rest of the nonlinear
network. We implement a time domain lossy line model in
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the general circuit simulator, in much the same manner as for
lossless lines. This becomes possible after we formulate the
time domain lossy line solution to relate directly the currents
and voltages at the line terminations (at present and past
times), as shown in (12). The Green’s functions are square
integrable and are analytic functions for constant R, L, C, and
G parameters and for a skin effect approximation.

II. TiIME DOMAIN FORMULATION

In the quasi-TEM approximation [7], the standard frequency
domain equations for a lossy transmission line are

BV(S)%)— + (R+ jwL)I(z,w) =0 (1a)
2{%—“’—) + (G + jwO)V(z,w) = 0. (1b)

The set of equations (la) and (1b) is equivalent to the
following:

0

[% + ’y(w)] [V(z,w) £ Z(w) {z,w)] =0 (2a,b)
where
1(w) = V(R + jwL)(G + jwC) (20)
and
Z(w) = /(R + jwL)(G + jwC)-1 (2d)

The standard solution to (2) for a line of length d is

V(0,w) £ Z(w) I(0,w)]
= [V(d,w) £ Z(w) I(d,w)] exp {Fy(w)d}. (3)

For lossless lines, v(w) = jwvIC and Z(w) = Zy =
+/L/C. The time domadin solution in this case, the Fourier
transform of (3), relates the voltage and currents at the line
terminations:

[Vout(t) + Zoiout(t)] = [Vin(t — T) + Zoisn(t — 7)]  (4a)
[Vin(t) = Zotin(t)] = Wous(t — T) — Zoiout(t — 7)](4b)

where vin(t) = v(0,1),v0u(t) = v(d,t),in(t) =
3(0,),iout(t) = i(d,t), and the time delay is 7 = dv/LC.
Equation (4) forms the basis of the lossless line simulation
model for general circuit simulators.

Figure 1 shows the equivalent circuit for the simulation
model, using voltage sources. (This model may also be imple-

mented using current sources.) During a time-domain analysis,
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the circuit simulator dynamically determines the time slices
at which the analysis steps through. At each time slice, it
solves for the voltages and currents which satisfy the circuit
equations for the entire nonlinear circuit, based on information
at past times. The transmission line model is primarily a
subroutine enforcing (4) on the voltages and currents at the
line terminations in the simulator solution.

In the case of lossy lines, the Fourier transform of the
equation (2) or solution (3) is not normally defined, as the
integrals are divergent. However, through careful handling of
divergent terms, we are able to obtain equations with con-
vergent expressions. Specifically, the divergences in g(t) and
2(t), the Fourier transform of v(w) and Z(w), respectively,
are shown to be é-function singularities:

9(t) = gs:8'(t) + gs6(t) + ge(t) (t) (52

and

2(t) = z56(t) + 2z(t) €(t) (5b)

where &'(t) is the derivative of the §-function and €(t) is
the Heaviside step function. We first derive the time domain
equations and solution to set up the simulation model, delaying
until Section IV to verify (5) and evaluate the expressions on
the right-hand side.
The time domain equations are derived from the Fourier
transform of (2) by using (5):
g

-— :i:gs/—- ig* w:t(.il?,t) =0

5z (6a,b)

where
g =gs+ (9:(t) e(t)) (6¢)

and x defines the convolution operator with respect to ¢, so that

wx(z,t) =v(z,t) £ 2 «i(z,t) (7a)
=v(z,t) + zsi(z, t)
+ / 2e(t —t)i(z, ') dt. (7b)

In the convolution in (6), we have converted ¢’ in (5) into a
time derivative on w and integrated the remaining 6-function
terms.

The time domain solution is the transform of (3) (with

T = d\/_L_C_):
w(z,t) = k(t,7) * we(z F d,t). (8)

The Green’s function l::(t, 7) is given by the inverse Fourier
transform

k(t,m) = FT™{exp [~y(w)d]}. )

This was evaluated before [8] for reflection-free infinitely long
lines for constant R, L,C, and G. For a general finite line
with reflections, we solve (6) directly in the time domain in
Section IIT and show that

k(t, 7y =kt —7,7) (10a)
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iin(t) iout(t)

Z5
vin (1)
+
E ()
Fig. 1. Transmission line simulation model, where for lossless lines: E;, (t)

= right-hand side of (4b), Fout(t) = right-hand side (4a). Lossy lines: £, ()
= right-hand side of (12b) + Ze * 25 (t — 7); Eout(t) = right-hand side of
(128) — z¢ * tout(t — 7).

where
k(t,7) = ks6(t) + ke(t, 7) €(2). (10b)
Equation (8) becomes
wx(z,t) = k(t,7)xwy(z Fd,t — 7). 1)

In terms of iy (t), Vout (t), %in(t), and iou(t) defined before at
the line terminations, the time domain solution (11)

W out(t) = kswym(t —7) + [ke(t,7) €(t)]

* Wy in(t —7) (12a)
W in(t) = ksw_ out(t — 7) + [ke(t,7) €(t)]
* We oue(t — T) (12b)
where
W4 out (t) = Vout(t) E Zstout (t)
+ [2ze6(t)] * tout () (12¢)
and
W 1n(t) = vin(t) £ 2s%in(t)
+ [zee(t)] * 4in(t). (12d)

Equation (12) relates the voltage and currents at the line
terminations at time ¢ with the history of voltages and currents,
through convolution integrals with square-integrable kernels.

The lossy line model is set up as a subroutine enforcing
(12) in place of (4) for the lossless case, as in Fig. 1. To
evaluate (12), the line termination voltages and currents at
past times in the simulator analysis are stored in memory. The
convolution integrals are computed as matrix multiplications
using a time discretization technique. Since the kernels are
square integrable, we only need to evaluate the convolution
integrals over a finite range, achieving significant speed im-
provements over previous formulations of the model [2]. For
constant R, L,C, and G, these kernels may be expressed as
analytic functions, as is shown later. In addition, a model using
current sources may be set up by swapping v and i, 2! and
Ze,z5 1 and zs in (11c~d), where FT(271) = {FT(z)}*
and z;' = 1/zs.

Coupled line simulation model for a system of n lines may
also be developed based on the above formulation. The quasi-
TEM equations are given by (2) with v(w), Z(w), V(z,w),
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and I(z,w), all promoted to n X n matrices [9]. In the cases
where R,L,C, and G can be simultaneously diagonalized
(e.g., mutually commuting) with frequency independent eigen-
vectors, the discussion in this paper applies to the diagonalized
eigenmodes of propagation along lossy transmission lines.
Examples are the even and odd modes for 2 coupled lines,
and the case of symmetric equally spaced n-coupled lines
with nearest neighbor coupling. For these cases, the simulation
model is set up using congruence transformers [10].

For the general case, the matrix version of +(w) of
(2) for n-coupled lines is diagonalized by a frequency
dependent transformation matrix S(w). This transformation
matrix and its inverse also relate elements of the vector
Wi(z,w) = V(z,w)t Z(w) I(z,w) with the eigenfunctions
W4 m(z,w) which solve the diagonalized version of (2).
Namely, Wy ..(z,w) = the mth element of the vector
[S(w) Wi(z,w)]. In the time domain, these relations define
the voltages v(z, t) and currents i(z, ¢) along the coupled lines
as functions of the eigenfunctions wx ., (z,t) (i.e., the Fourier
transform of Wy m(z,w)), involving convolution integrals of
s(t), the Fourier transform of S(w), with w4 m(2,%). Inverse
relations expressing w4 m(z,t) as functions of v(x,t) and
i(x, ) are similarly derived, involving convolutions of s~*(t)
with wi(z,t).

In the time domain coupled lines model, these relations
among the line voltages, currents, and the eigenfunctions,
evaluated at the line terminals at £ = 0 and z = d,
may be enforced via subroutines in each of two congruence
transformer elements, interconnected by transmission lines
corresponding to each of the eigenmodes. These transmis-
sion lines individually propagates one of the eigenfunctions
according to equations (12) and are enforced as before in
separate subroutines for each eigenmode. For the previous
case of frequency independent S, the convolution integrals
to be evaluated in the congruence transformer elements re-
duce to simple matrix-vector multiplications, since the Fourier
transform of S is a ¢ function.

III. DYNAMIC TRAVELING WAVES

Equation (4) for lossless lines expresses an invariance
condition. This is seen from the Fourier transform of (2a, b):

[3 + \/f_;%] [W(z,t) + Zoi(z,1)] = 0

1
= (13a,b)

showing that [v(z,t) £ Zoi(z,t)] are constant along the
forward (+) and backward (—) characteristics, = F t/ VIC =
constant, corresponding to the forward and backward traveling
waves.

For the lossy case, the integral-differential equations (6)
describe propagation of dynamic forward and backward waves
w..,w_ (each carrying past history information) along the (£)
characteristics. As they propagate, w. and w_ are distorted by
the dynamic “sinks/sources” § * w and modified internally by
the dynamic impedance z. of (7). Indeed, (6) is the invariance
condition (including sinks/sources) behind the simplicity of
(12) and is the extension of the method of characteristics to
the lossy case.
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The Green’s functions for the propagation of w is obtained
by integrating (6). Any solution to (6) satisfies (for line length
d)

d a | .
w4 (z,1) = exp {?d[% + 955, & y*} }
cwx(z, ) (14a,b)
=exp {—dgx}wi(x Fd,t —7) (l4c,d)

where 7 = dgs and exp {s[8/0x + VLC/dt]} is the
translation operator (i.e., exp {s[8/9z+v/LC8 /0t }w(z,t) =
w(z + s,t £ sv/LC)). In other words, the § singularity in
g(t) generate the time delay 7 in w, and the é-function term
contributes to its attenuation.

Equating (14) to (11) we obtain k(t,7)* = exp {—dg+}.
Using the convolution theorem, we exptess k(t,7) as

k(t,T) = exp {—gsd}FT ™ [exp {—7e(w)d}]

where

(15a)

Ye(w) = FT{(ge() e())}-
The divergent term in the FT~! in (15) is extracted as in
(10b), with
ks(t,7) 8(t) = exp {—gsd}FT " {exp [—vc(c0)d]} (16a)
ke(t, ) e(t) = exp {—gsd}FT ™"
+ {exp [-7e(w)d] — exp [—7e(00)d] }(16b)

For constant R, L, C, G, v.(c0) = 0; hence, ks = exp {—gsd}
and

(15b)

ke(t,7) =br exp{—a(t+ 1)}
AN i)
VT2 -2

which is also obtained [8] from FT [exp {—v(w)d}], using
(ct. (5))

a7

Ye(w) = y(w) — g5 — jwgs'- (18)

IV. VARIOUS FREQUENCY DEPENDENCE

For constant R, L, C, G, we evaluated the functions in (5)
to be

gs =To, gs=ary, 25= 2o 19)
ge(t) = —70o (%) exp (—at) I, (bt) (20a)
ze(t) = Zob exp (—at)[11(bt) — Io(bt)] (20b)

where
T0 = \/35
_1(R G)
“=3 (z te
- 1(8 1) o

and Iy and I; are the modified Bessel functions.
A method to obtain (19)—(21) is to observe that the trans-
forms for v(w) and Z(w) may be expressed formally as
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time derivatives of the inverse Fourier transform (FT~!) of
{1/v(w)}, a finite function:

g(t) = (R+ Lgt> (G+ Ci)FT—l{T(lw—)} (22a)

0 — 1
(t)—(R-l—Lat) {W} (22b)
Explicitly,
FT! { ;(1;)—} = [exp (—at)Io(bt) €(¢)]. (22¢)

The derivatives of €(¢) in (22) yield 6(¢) and &'(t) in (5a)
and (5b). Also, we have used the relations I(0) = 1,1;(0) =
0, Io(bt) 8'(t) = 6'(t), and exp (—at)d'(t) = & (t) + ad(t).
Indeed, we recover 2(c—d) as the Fourier transform of (5)
using (19)-(21).

For frequency dependent R, L, C, and G, the expressions for
the singular and finite parts for g(¢) and 2(¢) in (5) depend on
the particular frequency behavior. First, to extract the singular
terms, we observe that the divergent contributions come from
the large w region in the Fourier transform, resulting in a
singularity at ¢ = 0. Expanding y(w) and Z(w) in positive and
negative powers of w, the singular terms may be identified by
power counting inside the transform integral (jw transforms
into &(¢), constant terms becomes §(¢) terms, and terms of
(1/jw) and higher orders are finite).

To be specific, the leading terms in w for v(w) and Z(w) are

b2

v(w) = jwro + ato ~ ——2;:) 4o (23a)
bZg
- = 2
Z(w) =7y Zw (23b)

Here, 79, Zy, a, and b are frequency dependent (cf. (21)), where
the leading behavior of v{w) and Z(w) are of order jw and 1,
respectively. The transform of (23) yields coefficients gs, gs,
and zs of (5). For example, the transform of [jwry + aTy)
in (23a) and Z; in (23b) yields the coefficients in (19) for
constant R, L,C, and G.

The finite terms are obtained by subtracting the already
identified singular terms from g(¢) and z(¢). This subtraction
is performed in the frequency domain to obtain finite integrals.
For constant R, L, C, and G, the transform of (18) defines the
finite part g using (19), and the transform of [Z(w) — Zo]
from (23b) gives z.. As a quick check, the terms proportional
to 1/jw in (23) reproduces the small ¢ behavior of (20)—(21).

In the general case, causality restricts these finite terms to
vanish for £ < 0, ie., they are of the form g.(¢)¢(t) and
2c(t) €(t). The finite part of k(t,7) is similarly restricted to
be k.(t)€(t). Were they nonzero for ¢ > 0, the convolution
integrals in (12) would range over all values of ¢, and (12)
would state that the currents and voltages at a particular time
depend on what is to happen at future times. This imposes
some restrictions on the type of frequency dependence of
R,L,C, and G allowed for physical systems.

We discuss skin-effect losses as a second example. We
assume constant L, C, G and approximate [11] R = Ry +
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Ry+/w. Substituting this expression for R into (23), and taking
the transform, we obtain

gs =70
RzT()
gs = GoTo — 8 12
26 = Zg (24)

where ag is a of (21) with R set to Rgy. The finite part
~ve(w) is given by (18) where y(w) is obtained by setting
R = Ry + Riy/w in (2¢). Terms proportional to +/w and
powers of 1/+/w are included in the finite parts. The term Z,
is obtained in a similar manner. If only the leading term in R,
are kept in (2¢,d) and G = 0, we obtain ks = 0 and

Rid?
k. = exp (—agmod) ——=—= —1—61%)
0

4Zot\/ (
1 R
e =—|Ro+ —=]|.
? 27y [ 0 \/Wt:}

Whereas k. above leads to the results in {11] for reflectionless
lines, (25) is only valid for ¢ <« (L/R1)?, since in this
approximation, wL > Riy/w, or w > (Ry/L)%. For large
values of ¢ corresponding to the small w region where Ry >
Ri+/w, (20) provides a good approximation. Furthermore, in
the computer model, the small ¢ region in the convolution
integral in (12) must be handled correctly. Assuming w to be
constant in the neighborhood (¢,¢ — A), the iniegral of k. in
this interval is exp (—aqoTod) erfc(R1d/4ZoAY/?), giving rise
to a term in (12) similar to the ks term.

Finally, if there are no analytic expressions for k. and z., the
fast fourier transform method is used to evaluate (15) and (16)
in the computer model. We need only to compute this initially
before the transient analysis. Furthermore, since the large w
divergences have already been taken out, the computation is
fast.

(25)

V. SIMULATION RESULTS

The lossy line mode! described above has been implemented
in SCAMPER [5], which allows modeling through user defined
Fortran subroutines. This model deals with the lossless line
as a special case (where convolutions are unnecessary), since
(12) goes over smoothly into (4) when R = G = 0. Various
lossless results are easily recovered.

As an example to verify the lossy aspects of the model,
we simulated a nonlinear network of a linear source driving a
transmission line with a nonlinear load. The source has output
resistance and capacitance of 75 {2 and 2 pF, respectively, the
transmission line is characterized by R = 75Q/m, G = 0.01
mho/m, Zy = 40Q,7 = 2 ns, and d = 50 cm. The load has
an input C~L—C stage with capacitances C and inductance L
of 2 pF and 10 nH, respectively, connected to a resistance of
75 € in series with a nonlinear element in which the current
is proportional to the square of the voltage across the nodes
(I = 10=*V?). The simulated circuit response was very close
to that obtained using the method of [3].

In a more practical application, we simulated a circuit
consisting of a high speed CMOS driver—receiver pair con-
nected by a line with R = 40Q/m, G = 0.02 mho/m,
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Fig. 2. (a) Voltage at driver end. (b) Voltage at receiver end. — — — ~ lossless

line; — lossy line.

Zo = 350, 7 = 0.85 ns, and d = 12 cm. The driver and
receiver models together have 28 active nonlinear transistors.
The results at the near and far ends are shown in Fig, 2, where
the lossless case is also displayed as a comparison. For lossy
lines, the simulator spends more time at each time-slice to
evaluate the convolution integrals. This is, however, offset by
the fewer analysis iterations needed by the simulator in this
case, which has a smoother waveform since ringing is damped.
CPU time for this complex example for 2 periods is 1.7 min
on an IBM 3090-200E, demonstrating the practicality of this
method (lossless case and the case of a short between driver
and receiver were 15% and 35% faster, respectively).

VL. CONCLUSIONS

We have presented a new formulation of the time domain
lossy line equations, which describe separate' propagation of
dynamic forward and backward waves. The solution relates
currents and voltages at the line terminations at present and
past times, involving convolutions with past history infor-
mation. For constant R, L, C, G, we evaluated the Green’s
functions in terms of modified Bessel functions. For frequency
dependent R, L,C, G, we described how to obtain finite ex-
pressions, giving as an example the kernels in a skin. effect
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approximation. Based on this solution, we set up the time
domain lossy line simulation model. This model is efficient
because it builds on the robustness of the familiar lossless
model, and because the square integrable Green’s functions
provide an effective natural cutoff for the required convolution
integrals. Transmission line networks with existing nonlinear
device models are simulated easily in the lossy case, as shown
in an example.
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