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Lossy Transmission Lines: Time Domain

Formulation and Simulation Model
Patrick S. Yeung, Member, IEEE

Abstract— The time domain quasi-TEM equations for Iossy

transmission lines with R, L, C, and G parameters is reformu-
lated and solved to relate directly the currents and voltages at
the line terminations, at present and past times. This allows a
computer model to be set up for simulating circuits with nonlinear
terminations in the time domain using general circuit simulators.
This formulation describes propagation of two dynamic forward
and backward waves and is the extension of the method of char-

acteristics to the Iossy case. Distortion and impedance changes are

generated by finite convolutions with past history information at
the line terminations. For constant R, L, C, and G, and for a skin

effect approximation, the kernels of Green’s functions for these

convolutions are derived as analytic expressions.

-I. INTRODUCTION

c OMPUTER simulations of transmission line effects (sig-

nal delays, distortions, and crosstalk) have become an

indispensable design tool for microwave, GaAs, and high-

speed high-density digital circuit designs. These simulations

must be accurate to act as software breadboards to help

designers “get it right the first time.” Nonlinear and frequency

dependent effects need to be accounted for where appropriate,

to ensure that the predicted simulation results correlate with

the circuit performance after manufacture. This is especially

important when design margins are tight and there is little

room for overdesign.

Neglecting losses, transient analysis of transmission line

networks with linear or nonlinear terminations is a well

studied subject [1]. For lossy lines, several methods have

been investigated [2]. Since nonlinear terminal networks are

best analyzed in the time domain, recent developments focus

on implementing a frequency domain analysis of the linear

lossy line network in the nonlinear time domain solution. This

is achieved by either the piecewise decomposition technique

[3] or through time-domain Green’s functions [4]. To be

implemented in a general circuit simulator (such as SPICE,

SCAMPER [5], or ASTM [6]), the former approach requires

nontrivial modifications to the matrix formulations of the

simulator. On the other hand, the latter method in its present

form suffers from the need for inserting negative impedance

elements into the network and lengthy evaluations of Green’s

functions and their convolutions.

In this paper, we present an approach to analyze the lossy

line directly in the time domain with the rest of the nonlinear

network. We implement a time domain lossy line model in
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the general circuit simulator, in much the same manner as for

lossless lines. This becomes possible after we formulate the

time domain lossy line solution to relate directly the currents

and voltages at the line terminations (at present and past

times), as shown in (12). The Green’s functions are squ~are

integrable and are analytic functions for constant R, L, C, and

G parameters and for a skin effect approximation.

II. TIME DOMAIN FORMULATION

In the quasi-TEM approximation [7], the standard frequency

domain equations for a lossy transmission line are

6’V(Z, u)

ax
+ (R + jwL)~(x, u) = O

81(x, W)

ax
+ (G +juc)v(x,u) = O.

The set of equations (la) and (lb) is equivalent

following:

[: 1
+ ‘-y(w) [V($, w) + z(w) I(Z, w)] = o

where

~(~) = J(R + jwL)(G + &O)

and

Z(U) = ~(R + jwL)(G + jwC)-l

The standard solution to (2) for a line of length d is

[V(O,LIJ) + Z(kr) 1(0, Ld)]

(la)

(lb)

to the

(2a,b)

(2C)

(2d)

= [V(d, w) + Z(w) l(d, w)] exp {~~(w)d}. (3)

For lossless lines, ~(u) = jwm and Z(W) = 20 =

~. The time domain solution in this case, the Fouj~ier
transform of (3), relates the voltage and currents at the line

terminations:

[~.~t(t) + ~oiOUt(t)] = [U~(t - ~) + zO~in(~ - T)] (Qa)

[~n(t) - Zoiin(t)] = [~OUt(t - T) - ZoiOU+(t - ~)](4b)

where Un(t) = v(O, t), vOUt(t) = v(d, t), iin(t) =

i(O, t), iout (t) = i(d, t), and the time delay is T = dti~.

Equation (4) forms the basis of the lossless line simulation
model for general circuit simulators.

Figure 1 shows the equivalent circuit for the simulation

model, using voltage sources. (This model may also be imple-

mented using current sources.) During a time-domain analysis,
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the circuit simulator dynamically determines the time slices

at which the analysis steps through. At each time slice, it

solves for the voltages and currents which satisfy the circuit

equations for the entire nonlinear circuit, based on information

at past times. The transmission line model is primarily a

subroutine enforcing (4) on the voltages and currents at the

line terminations in the simulator solution.

In the case of lossy lines, the Fourier transform of the

equation (2) or solution (3) is not normally defined, as the

integrals are divergent. However, through careful handling of

divergent terms, we are able to obtain equations with con-

vergent expressions. Specifically, the divergences in g(t) and

z(t), the Fourier transform of ~(u) and Z(W), respectively,

are shown to be &function singularities:

g(t) = g6/6’(t) + 986(t) + 9.(~) ~(~) (5a)

and

z(t) = z66(t) + ~.(~) ~(~) (5b)

where 6’(t) is the derivative of the &function and c(t) is

the Heaviside step function. We first derive the time domain

equations and solution to setup the simulation model, delaying

until Section IV to verify (5) and evaluate the expressions on

the right-hand side.

The time domain equations are derived from the Fourier

transform of (2) by using (5):

[ 1++* UL&(z,t)=o (6a,b)

where

j =96+ (9.(t) ~(t)) (6c)

and * defines the convolution operator with respect to t, so that

W+(z,t)=V(z, t)+ z * i(z,t) (7a)

= V(x,t)* Z$i(z,t)

/

t
+ Z.(t– t’)i(z,t’)dt’. (7b)

—cc

In the convolution in (6), we have converted 6’ in (5) into a

time derivative on w and integrated the remaining 6-function

terms.

The time domain solution is the transform of (3) (with

r = d~):

W&(Z, t) = ~(t,r) * W+(Z + d,t). (8)

The Green’s function k(t, ~) is given by the inverse Fourier

transform

k(t,T) = FT-l{exp [–~(ti)d]}. (9)

This was evaluated before [8] for reflection-free infinitely long

lines for constant R, L, C, and G. For a general finite line

with reflections, we solve (6) directly in the time domain in

Section III and show that

i(t, T) = k(t– T,T) (lOa)

ii”(t) ‘out (t)

+--I

Zrl H 26

‘in(t) Vout(t)
++

Ein (t) 0 0 ‘out(t)
Fig. 1. Transmission line simulation model, where for lossless lines: ~i~ (t)
= ~ight.harrdsideof (4h), Eout (t)= right-hand side (4a). fJOSSy liIreS: J%(~)

– right-hand side of (12b) + Z, * tin (t – T); &,Ut (t) = right-hand side of
~12a) – Z, * ZOU,(t – 7).

where

k(t, T) = kb($(t) + k.(t,T)c(t). (lOb)

Equation (8) becomes

W~(Z, t) = k(t,~) *w+(~+d, t –7). (11)

In terms of ~n(t), vOUt(t), iin(t),and iOUt(t) defined before at

the line terminations, the time domain solution (11)

where

and

W+)ou,(t) = k,w+,,n(t - T) + [Ls.(t, 7) c(t)]

* W+,i~(t -T) (12a)

W_,i~(t) = k8W-,~~~(t – T) + [l%f Jtj T) E(t)]

* w_,out(t – T) (12b)

Wj-,out (t) = .vo~t(t)+ Z&iout(t)

+ [.z,qt)]*iout(t) (12C)

W+,,n(t) = VI~(t) + 2~’ii~(t)

+ [.Z~6(t)] * ‘ii*(t). (12d)

Equation (12) relates the voltage and currents at the line

terminations at time twith the history of voltages and currents,

through convolution integrals with square-integrable kernels.

The lossy line model is set up as a subroutine enforcing

(12) in place of (4) for the lossless case, as in Fig. 1. To

evaluate (12), the line termination voltages and currents at

past times in the simulator analysis are stored in memory. The

convolution integrals are computed as matrix multiplications
using a time discretization technique. Since the kernels are

square integrable, we only need to evaluate the convolution

integrals over a finite range, achieving significant speed im-

provements over previous formulations of the model [2]. For

constant R, L, C, and G, these kernels may be expressed as

analytic functions, as is shown later. In addition, a model using

current sources may be set up by swapping v and i, z; 1 and

‘~land .z& in (llc–d), where FT(.z;l) = {FT(.z,)}-l.ze>z~

and Z8 = l/.z&.

Coupled line simulation model for a system of n lines may

also be developed based on the above formulation. The quasi-

TEM equations are given by (2) with v(w), Z(W), V(Z, u),
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and 1(x, u), all promoted to n x n matrices [9]. In the cases

where R, L, C, and G can be simultaneously diagonalized

(e.g., mutually commuting) with frequency independent eigen-

vectors, the discussion in this paper applies to the diagonalized

eigenmodes of propagation along lossy transmission lines.

Examples are the even and odd modes for 2 coupled lines,

and the case of symmetric equally spaced n-coupled lines

with nearest neighbor coupling. For these cases, the simulation

model is set up using congruence transformers [10].

For the general case, the matrix version of -y(ti) of

(2) for n-coupled lines is diagonalized by a frequency

dependent transformation matrix S(U). This transformation

matrix and its inverse also relate elements of the vector

W+ (x, w) = V(X, W) + Z(u) 1(z, w) with the eigenfunctions

W+,m(z, u) which solve the diagonalized version of (2).

Namely, W+,~ (z, w) = the mth element of the vector

[S(W) W+(x, u)]. In the time domain, these relations define

the voltages V(Z, t) and currents i($, t) along the coupled lines

as functions of the eigenfunctions W+,m (z, t) (i.e., the Fourier

transform of W+,m (x, u)), involving convolution integrals of

s(t), the Fourier transform of S(U), with w+,~ (x, t). Inverse

relations expressing W+,m (x, t) as functions of V(Z, t) and

i(c, t) are similarly derived, involving convolutions of s– 1(t)

with w+(z, t).

In the time domain coupled lines model, these relations

among the line voltages, currents, and the eigenfunctions,

evaluated at the line terminals at z = O and $ = d,

may be enforced via subroutines in each of two congruence

transformer elements, interconnected by transmission lines

corresponding to each of the eigenmodes. These transmis-

sion lines individually propagates one of the eigenfunctions

according to equations (12) and are enforced as before in

separate subroutines for each eigenmode. For the previous

case of frequency independent S, the convolution integrals

to be evaluated in the congruence transformer elements re-

duce to simple matrix-vector multiplications, since the Fourier

transform of S is a 6 function.

III. DYNAMIC TRAVELING WAVES

Equation (4) for lossless lines expresses an invariance

condition. This is seen from the Fourier transform of (2a, b):

[ 1
: + m; [V(!z, t) * Zoi(z, t)] = o (13a,b)

showing that [v(z, t) + Zoi(Z, t)] are constant along the

forward (+) and backward (–) characteristics, x + t/@ =

constant, corresponding to the forward and backward traveling

waves.

For the lossy case, the integral-differential equations (6)

describe propagation of dynamic forward and backward waves

w+, w– (each carrying past history information) along the (+)

characteristics. As they propagate, w+ and w_ are distorted by

the dynamic “sinkslsources” jj * w and modified internally by

the dynamic impedance z. of (7). Indeed, (6) is the invariance

condition (including sinks fsources) behind the simplicity of

(12) and is the extension of the method of characteristics to
the lossy case.

The Green’s functions for the propagation of w is obtained

by integrating (6). Any solution to (6) satisfies (for line Ilength

d)

{[

a 6’.
w+(r, t) = exp Td — +g6/— +g*

ax at 1}
. W+(x, t) (I14a,b)

= exp {–dij*}w+(x + d,t – r) (14c,d)

where ~ = alga, and exp {s [d/& + @~/&]} is the

translation operator (i.e., exp {s[d/&+ @7il/8t] }w(x, t) =
w (Z + S, t + s@)). In other words, the 6’ singularity in

g(t) generate the time delay ~ in w+, and the 6-function term

contributes to its attenuation.

Equating (14) to (11) we obtain /c(t,I-)*= exp {–dj*}.

Using the convolution theorem, we exptess k(t, ~) as

k(t, T) = exp {-g6d}FT-l[exp {-ye(w) d}] (l:5a)

where

%(w)= FT{(ge(t) c(t))}. (l!jb)

The divergent term in the FT– 1 in (15) is extracted as in

(lOb), with

k~(t, T) 6(t) = exp {–gsd}FT-l{exp [–-y, (co)~} (16a)

ke(t, r) c(t) = exp {–g6d}FT-1

. {exp [-yc(ti)dl - exp [-~,(oa)d]}(16b)

For constant R, L, C, G, TC(CO) = O; hence, k6 = exp {–gsd}

and

Ic.(t,r) =br exp{–-a(t + T)}

Il(b/(t + 7)2 –+)

J(t + T)2 – d
(117)

which is also obtained [8] from FT [exp { –T(w)d}], using

(cf. (5))

%(w) = ‘-Y(W)– gd – jwgfil . (1.8)

IV. VARIOUS FREQUENCY DEPENDENCE

For constant R, L, C, G, we evaluated the functions in (5)

to be

()bg,(t) = –To ; exp (–at)I~ (M) (20a)

z.(t) = ZOb exp (–at)[ll(bt) – Io(bt)] (2Ctb)

where

To=m

(2,1)

and IO and 11 are the modified Bessel functions.
A method to obtain (19)--(21) is to observe that the trans-

forms for -y(w) and Z(W) may be expressed formally as
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time derivatives of the inverse Fourier transform (FT–l) of

{1/-y(u)}, a finite function:

( J(G+caFT-l{iJ}(“a)g(t) = R+ L!

2(’)= F+ L+)FT-1{*}

(22b)

Explicitly,

{}
— = [exp (-at) lo(bt) c(t)].

~T-l 1 (“c)
‘y(w)

The derivatives of c(t)b (22) yield ii(t) and 6’(t) in (5a)

and (5b). Also, we have used the relations 10(0) = 1,11(0) =

O,10(M) 6’(t) = d’(t), and exp (–at)ti’(t) = c$’(t) + a6(t).

Indeed, we recover 2(c–d) as the Fourier transform of (5)

using (19)–(21).

For frequency dependent R, L, C, and G, the expressions for

the singular and finite parts for g(t) and z(t) in (5) depend on

the particular frequency behavior. First, to extract the singular

terms, we observe that the divergent contributions come from

the large w region in the Fourier transform, resulting in a

singularity at t = O. Expanding -y(w) and Z(w) in positive and

negative powers of w, the singular terms may be identified by

power counting inside the transform integral (-jw transforms

into &(t), constant terms becomes ti(t) terms, and terms of

(1/jw) and higher orders are finite).

To be specific, the leading terms in w for T(W) and Z(w) are

b2r0
-y(w) =jwro+aro —-+...

2jw

Z(W) =ZO –*+....

(23a)

(23b)

Here, To, 20, a, and b are frequency dependent (cf. (21)), where

the leading behavior of T(W) and Z(w) are of order jw and 1,

respectively. The transform of (23) yields coefficients g$,, gb,

and Z6 of (5). For example, the transform of [jwro + aTo]

in (23a) and 20 in (23b) yields the coefficients in (19) for

constant R, L, C, and G.

The finite terms are obtained by subtracting the already

identified singular terms from g(t) and z(t). This subtraction

is performed in the frequency domain to obtain finite integrals.

For constant R, L, C’, and G, the transform of (18) defines the

finite part g. using (19), and the transform of [Z(w) – 2.]

from (23b) gives ZC. As a quick check, the terms proportional

to l/jw in (23) reproduces the small t behavior of (20)–(21).

In the general case, causality restricts these finite terms to

vanish for t < 0, i.e., they are of the form g.(t) e(t)and

z.(t) c(t). The finite part of k(t, T) is similarly restricted to

be k.(t) c(t).Were they nonzero for t > 0, the convolution

integrals in (12) would range over all values of t, and (12)

would state that the currents and voltages at a particular time

depend on what is to happen at future times. This imposes

some restrictions on the type of frequency dependence of

R, L, C, and G allowed for physical systems.

We discuss skin-effect losses as a second example. We

assume constant L, C, G and approximate [11] R = RO +

R1 ~. Substituting this expression for R into (23), and taking

the transform, we obtain

gfjl = TO

.R~To

g~=aoTo–~~

26 = ,zo (24)

where a. is a of (21) with R set to R.. The finite part

T.(u) is given by (18) where T(W) is obtained by setting

R = R. + RI@ in (2c). Terms proportional to @ and

powers of I/@ are included in the finite parts. The term Z,

is obtained in a similar manner. If only the leading term in RI

are kept in (2c,d) and G = O, we obtain k~ = O and

k. = exp (–aoTod)
RId

()

R~d2

4zotm
exp ——

16Z~t

‘e”& Fo+fkl
(25)

Whereas k. above leads to the results in [11] for reflectionless

lines, (25) is only valid for t << (L/R1 )2, since in this

approximation, WL >> RI@, or w >> (R1/L)2. For large

values of t corresponding to the small w region where RO >>

RI@, (20) provides a good approximation. Furthermore, in

the computer model, the small t region in the convolution

integral in (12) must be handled correctly. Assuming w to be

constant in the neighborhood (t,t– A), the integral of k. in

this interval is exp (– ao’rod) erfc(R1 d/4 ZoA112 ), giving rise

to a term in (12) similar to the k~ term.

Finally, if there are no analytic expressions for kc and z., the

fast fourier transform method is used to evaluate (15) and (16)

in the computer model. We need only to compute this initially

before the transient analysis. Furthermore, since the large w

divergences have already been taken out, the computation is

fast.

V. SIMULATION RESULTS

The lossy line model described above has been implemented

in SCAMPER [5], which allows modeling through user defined

Fortran subroutines. This model deals with the lossless line

as a special case (where convolutions are unnecessary), since

(12) goes over smoothly into (4) when R = G = 0, Various

10SS1MSresults are easily recovered.

As an example to verify the lossy aspects of the model,

we simulated a nonlinear network of a linear source driving a

transmission line with a nonlinear load. The source has output

resistance and capacitance of 75 0 and 2 pF, respectively, the

transmission line is characterized by R = 75 !Wm, G = 0.01

mho/m, 20 = 40 Q, T = 2 ns, and d = 50 cm. The load has

an input C–L–C stage with capacitances C and inductance L

of 2 pF and 10 nH, respectively, connected to a resistance of

75 Q in series with a nonlinear element in which the current

is proportional to the square of the voltage across the nodes
(1= 10-4 V2). The simulated circuit response was very close

to that obtained using the method of [3].

In a more practical application, we simulated a circuit

consisting of a high speed CMOS driver–receiver pair con-

nected by a line with R = 40 Q/m, G = 0.02 mho/m,
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Fig. 2. (a) Voltage at driver end. (b) Voltage at receiver end. –––– lossless

line; — lossy line.

20 = 35 Q, r = 0.85 ns, and d = 12 cm. The driver and

receiver models together have 28 active nonlinear transistors.

The results at the near and far ends are shown in Fig. 2, where

the lossless case is also displayed as a comparison. For lossy

lines, the simulator spends more time at each time-slice to

evaluate the convolution integrals. This is, however, offset by

the fewer analysis iterations needed by the simulator in this

case, which has a smoother waveform since ringing is damped.

CPU time for this complex example for 2 periods is 1.7 min

on an IBM 3090 -200E, demonstrating the practicality of this

method (lossless case and the case of a short between driver

and receiver were 15$% and 359% faster, respectively).

VI. CONCLUSIONS

We have presented a new formulation of the time domain

lossy line equations, which describe separate propagation of

dynamic forward and backward waves. The solution relates

currents and voltages at the line terminations at present and

past times, involving convolutions with past history infor-

mation. For constant R, L, C, G, we evaluated the Green’s

functions in terms of modified Bessel functions. For frequency

dependent R, L, C, G, we described how to obtain finite ex-

pressions, giving as an example the kernels in a skin effect

approximation. Based on this solution, we set up the time

domain lossy line simulation model. This model is efficient

because it builds on the robustness of the familiar lossless

model, and because the square integrable Green’s functions

provide an effective natural cutoff for the required convolution

integrals. Transmission line networks with existing nonlinear

device models are simulated easily in the lossy case, as shc~wn

in an example.
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